\(\int \frac {\cos (c+d x) \cot ^5(c+d x)}{a+a \sin (c+d x)} \, dx\) [632]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 102 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {x}{a}-\frac {3 \text {arctanh}(\cos (c+d x))}{8 a d}-\frac {\cot (c+d x)}{a d}+\frac {\cot ^3(c+d x)}{3 a d}+\frac {3 \cot (c+d x) \csc (c+d x)}{8 a d}-\frac {\cot ^3(c+d x) \csc (c+d x)}{4 a d} \]

[Out]

-x/a-3/8*arctanh(cos(d*x+c))/a/d-cot(d*x+c)/a/d+1/3*cot(d*x+c)^3/a/d+3/8*cot(d*x+c)*csc(d*x+c)/a/d-1/4*cot(d*x
+c)^3*csc(d*x+c)/a/d

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {2918, 2691, 3855, 3554, 8} \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {3 \text {arctanh}(\cos (c+d x))}{8 a d}+\frac {\cot ^3(c+d x)}{3 a d}-\frac {\cot (c+d x)}{a d}-\frac {\cot ^3(c+d x) \csc (c+d x)}{4 a d}+\frac {3 \cot (c+d x) \csc (c+d x)}{8 a d}-\frac {x}{a} \]

[In]

Int[(Cos[c + d*x]*Cot[c + d*x]^5)/(a + a*Sin[c + d*x]),x]

[Out]

-(x/a) - (3*ArcTanh[Cos[c + d*x]])/(8*a*d) - Cot[c + d*x]/(a*d) + Cot[c + d*x]^3/(3*a*d) + (3*Cot[c + d*x]*Csc
[c + d*x])/(8*a*d) - (Cot[c + d*x]^3*Csc[c + d*x])/(4*a*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2691

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
 f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[b^2*((n - 1)/(m + n - 1)), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 2918

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 3554

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {\int \cot ^4(c+d x) \, dx}{a}+\frac {\int \cot ^4(c+d x) \csc (c+d x) \, dx}{a} \\ & = \frac {\cot ^3(c+d x)}{3 a d}-\frac {\cot ^3(c+d x) \csc (c+d x)}{4 a d}-\frac {3 \int \cot ^2(c+d x) \csc (c+d x) \, dx}{4 a}+\frac {\int \cot ^2(c+d x) \, dx}{a} \\ & = -\frac {\cot (c+d x)}{a d}+\frac {\cot ^3(c+d x)}{3 a d}+\frac {3 \cot (c+d x) \csc (c+d x)}{8 a d}-\frac {\cot ^3(c+d x) \csc (c+d x)}{4 a d}+\frac {3 \int \csc (c+d x) \, dx}{8 a}-\frac {\int 1 \, dx}{a} \\ & = -\frac {x}{a}-\frac {3 \text {arctanh}(\cos (c+d x))}{8 a d}-\frac {\cot (c+d x)}{a d}+\frac {\cot ^3(c+d x)}{3 a d}+\frac {3 \cot (c+d x) \csc (c+d x)}{8 a d}-\frac {\cot ^3(c+d x) \csc (c+d x)}{4 a d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(232\) vs. \(2(102)=204\).

Time = 1.00 (sec) , antiderivative size = 232, normalized size of antiderivative = 2.27 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\csc ^4(c+d x) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2 \left (72 c+72 d x+18 \cos (c+d x)+30 \cos (3 (c+d x))+24 c \cos (4 (c+d x))+24 d x \cos (4 (c+d x))+27 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+9 \cos (4 (c+d x)) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-12 \cos (2 (c+d x)) \left (8 c+8 d x+3 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-3 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )-27 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-9 \cos (4 (c+d x)) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+32 \sin (2 (c+d x))-32 \sin (4 (c+d x))\right )}{192 a d (1+\sin (c+d x))} \]

[In]

Integrate[(Cos[c + d*x]*Cot[c + d*x]^5)/(a + a*Sin[c + d*x]),x]

[Out]

-1/192*(Csc[c + d*x]^4*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2*(72*c + 72*d*x + 18*Cos[c + d*x] + 30*Cos[3*(c
+ d*x)] + 24*c*Cos[4*(c + d*x)] + 24*d*x*Cos[4*(c + d*x)] + 27*Log[Cos[(c + d*x)/2]] + 9*Cos[4*(c + d*x)]*Log[
Cos[(c + d*x)/2]] - 12*Cos[2*(c + d*x)]*(8*c + 8*d*x + 3*Log[Cos[(c + d*x)/2]] - 3*Log[Sin[(c + d*x)/2]]) - 27
*Log[Sin[(c + d*x)/2]] - 9*Cos[4*(c + d*x)]*Log[Sin[(c + d*x)/2]] + 32*Sin[2*(c + d*x)] - 32*Sin[4*(c + d*x)])
)/(a*d*(1 + Sin[c + d*x]))

Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.24

method result size
parallelrisch \(\frac {3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 \left (\cot ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-192 d x +120 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+72 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-120 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )}{192 d a}\) \(126\)
derivativedivides \(\frac {\frac {\left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}-\frac {2 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-2 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+10 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {2}{3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}+\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {10}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-32 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16 d a}\) \(136\)
default \(\frac {\frac {\left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}-\frac {2 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-2 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+10 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {2}{3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}+\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {10}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-32 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16 d a}\) \(136\)
risch \(-\frac {x}{a}-\frac {48 i {\mathrm e}^{6 i \left (d x +c \right )}+15 \,{\mathrm e}^{7 i \left (d x +c \right )}-96 i {\mathrm e}^{4 i \left (d x +c \right )}+9 \,{\mathrm e}^{5 i \left (d x +c \right )}+80 i {\mathrm e}^{2 i \left (d x +c \right )}+9 \,{\mathrm e}^{3 i \left (d x +c \right )}-32 i+15 \,{\mathrm e}^{i \left (d x +c \right )}}{12 a d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{4}}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{8 d a}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{8 d a}\) \(152\)
norman \(\frac {-\frac {1}{64 a d}+\frac {5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{192 d a}+\frac {29 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d a}-\frac {91 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d a}+\frac {91 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d a}-\frac {29 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d a}-\frac {5 \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d a}+\frac {\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )}{64 d a}-\frac {x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d a}-\frac {11 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d a}-\frac {7 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a d}\) \(325\)

[In]

int(cos(d*x+c)^6*csc(d*x+c)^5/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/192*(3*tan(1/2*d*x+1/2*c)^4-3*cot(1/2*d*x+1/2*c)^4-8*tan(1/2*d*x+1/2*c)^3+8*cot(1/2*d*x+1/2*c)^3-24*tan(1/2*
d*x+1/2*c)^2+24*cot(1/2*d*x+1/2*c)^2-192*d*x+120*tan(1/2*d*x+1/2*c)+72*ln(tan(1/2*d*x+1/2*c))-120*cot(1/2*d*x+
1/2*c))/d/a

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.68 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {48 \, d x \cos \left (d x + c\right )^{4} - 96 \, d x \cos \left (d x + c\right )^{2} + 30 \, \cos \left (d x + c\right )^{3} + 48 \, d x + 9 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 9 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 16 \, {\left (4 \, \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) - 18 \, \cos \left (d x + c\right )}{48 \, {\left (a d \cos \left (d x + c\right )^{4} - 2 \, a d \cos \left (d x + c\right )^{2} + a d\right )}} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^5/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/48*(48*d*x*cos(d*x + c)^4 - 96*d*x*cos(d*x + c)^2 + 30*cos(d*x + c)^3 + 48*d*x + 9*(cos(d*x + c)^4 - 2*cos(
d*x + c)^2 + 1)*log(1/2*cos(d*x + c) + 1/2) - 9*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*log(-1/2*cos(d*x + c)
+ 1/2) - 16*(4*cos(d*x + c)^3 - 3*cos(d*x + c))*sin(d*x + c) - 18*cos(d*x + c))/(a*d*cos(d*x + c)^4 - 2*a*d*co
s(d*x + c)^2 + a*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**5/(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 217 vs. \(2 (94) = 188\).

Time = 0.32 (sec) , antiderivative size = 217, normalized size of antiderivative = 2.13 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {\frac {120 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {24 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {8 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}}{a} - \frac {384 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} + \frac {72 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} + \frac {{\left (\frac {8 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {24 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {120 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - 3\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{4}}{a \sin \left (d x + c\right )^{4}}}{192 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^5/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/192*((120*sin(d*x + c)/(cos(d*x + c) + 1) - 24*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 8*sin(d*x + c)^3/(cos(d
*x + c) + 1)^3 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4)/a - 384*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a + 72
*log(sin(d*x + c)/(cos(d*x + c) + 1))/a + (8*sin(d*x + c)/(cos(d*x + c) + 1) + 24*sin(d*x + c)^2/(cos(d*x + c)
 + 1)^2 - 120*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 3)*(cos(d*x + c) + 1)^4/(a*sin(d*x + c)^4))/d

Giac [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.64 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {192 \, {\left (d x + c\right )}}{a} - \frac {72 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} - \frac {3 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 8 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 24 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 120 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{4}} + \frac {150 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 120 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 24 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 8 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4}}}{192 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^5/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/192*(192*(d*x + c)/a - 72*log(abs(tan(1/2*d*x + 1/2*c)))/a - (3*a^3*tan(1/2*d*x + 1/2*c)^4 - 8*a^3*tan(1/2*
d*x + 1/2*c)^3 - 24*a^3*tan(1/2*d*x + 1/2*c)^2 + 120*a^3*tan(1/2*d*x + 1/2*c))/a^4 + (150*tan(1/2*d*x + 1/2*c)
^4 + 120*tan(1/2*d*x + 1/2*c)^3 - 24*tan(1/2*d*x + 1/2*c)^2 - 8*tan(1/2*d*x + 1/2*c) + 3)/(a*tan(1/2*d*x + 1/2
*c)^4))/d

Mupad [B] (verification not implemented)

Time = 10.44 (sec) , antiderivative size = 317, normalized size of antiderivative = 3.11 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-3\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-8\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+8\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-24\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+120\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-120\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+24\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+384\,\mathrm {atan}\left (\frac {8\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )-3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )+8\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+72\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{192\,a\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4} \]

[In]

int(cos(c + d*x)^6/(sin(c + d*x)^5*(a + a*sin(c + d*x))),x)

[Out]

(3*sin(c/2 + (d*x)/2)^8 - 3*cos(c/2 + (d*x)/2)^8 - 8*cos(c/2 + (d*x)/2)*sin(c/2 + (d*x)/2)^7 + 8*cos(c/2 + (d*
x)/2)^7*sin(c/2 + (d*x)/2) - 24*cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2)^6 + 120*cos(c/2 + (d*x)/2)^3*sin(c/2 +
 (d*x)/2)^5 - 120*cos(c/2 + (d*x)/2)^5*sin(c/2 + (d*x)/2)^3 + 24*cos(c/2 + (d*x)/2)^6*sin(c/2 + (d*x)/2)^2 + 3
84*atan((8*cos(c/2 + (d*x)/2) - 3*sin(c/2 + (d*x)/2))/(3*cos(c/2 + (d*x)/2) + 8*sin(c/2 + (d*x)/2)))*cos(c/2 +
 (d*x)/2)^4*sin(c/2 + (d*x)/2)^4 + 72*log(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))*cos(c/2 + (d*x)/2)^4*sin(c/2
+ (d*x)/2)^4)/(192*a*d*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2)^4)